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on pyroptosis‑related genes can predict 
the prognosis of prostate cancer
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Abstract 

Background:  Pyroptosis can not only inhibit the occurrence and development of tumors but also develop a micro-
environment conducive to cancer growth. However, pyroptosis research in prostate cancer (PCa) has rarely been 
reported.

Methods:  The expression profile and corresponding clinical data were obtained from The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO) databases. Patients were divided into different clusters using consensus 
clustering analysis, and differential genes were obtained. We developed and validated a prognostic biomarker for 
biochemical recurrence (BCR) of PCa using univariate Cox analysis, Lasso-Cox analysis, Kaplan–Meier (K–M) survival 
analysis, and time-dependent receiver operating characteristics (ROC) curves.

Results:  The expression levels of most pyroptosis-related genes (PRGs) are different not only between normal and 
tumor tissues but also between different clusters. Cluster 2 patients have a better prognosis than cluster 1 patients, 
and there are significant differences in immune cell content and biological pathway between them. Based on the 
classification of different clusters, we constructed an eight genes signature that can independently predict the 
progression-free survival (PFS) rate of a patient, and this signature was validated using a GEO data set (GSE70769). 
Finally, we established a nomogram model with good accuracy.

Conclusions:  In this study, PRGs were used as the starting point and based on the expression profile and clinical 
data, a prognostic signature with a high predictive value for biochemical recurrence (BCR) following radical prostatec-
tomy (RP) was finally constructed, and the relationship between pyroptosis, immune microenvironment, and PCa was 
explored, providing important clues for future research on pyroptosis and immunity.
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Background
Prostate cancer (PCa) is the most common malignant 
tumor in male genitourinary system. According to Can-
cer Statistics, there were about 248,530 new cases and 
34,130 deaths in the United States in 2021, accounting 
for 26% of the total incidence of malignant tumors and 
11% of the total mortality [1]. Most patients with local-
ized cancers receive standard treatments, such as radical 
prostatectomy (RP) or radiation therapy [2]. However, 
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biochemical recurrence (BCR) occurs in approximately 
20–30% of patients [3]. BCR patients develop clinical 
relapses and metastases that ultimately result in death. 
While numerous indicators exist for predicting the prog-
nosis of PCa patients, such as Gleason score and pros-
tate-specific antigen (PSA) [4, 5], their ability to predict 
the BCR time of patients is limited. Therefore, develop-
ing a biomarker with high accuracy and strong specificity 
is critical for predicting the prognosis and guiding PCa 
patients’ treatment. Pyroptosis, also known as cellular 
inflammatory necrosis, is a programmed cell death that 
manifests as constantly enlarging cells, releasing cell con-
tents and thus activating a strong inflammatory response 
[6]. Unlike apoptosis, pyroptosis requires inflammasomes 
and gasdermin family to act as executors [7]. Pyroptosis is 
a caspase dependent regulated cell death, and it is driven 
primarily by the pore forming proteins gasdermin D 
(GSDMD) or gasdermin E (GSDME / DFNA5) [8]. Dur-
ing stresses such as inflammasome activation, GSDMD 
can be cleaved by CASP1, CASP11, or CASP8 to gener-
ate the N-terminal fragment of GSDMD (GSDMD-N) 
[9]. In contrast, the production of GSDME-N is mediated 
by CASP3 [10]. After oligomerization, GSDMD-N or 
GSDME-N forms pores in the plasma membrane, leading 
to pyroptotic cell death. Pyroptosis is believed to play a 
dual action in tumorigenesis by inhibiting the occurrence 
and development of tumors and developing a microenvi-
ronment that provides cancer with nutrients and acceler-
ates its growth [11]. At present, numerous studies have 
revealed that pyroptosis is critical for tumor cell prolif-
eration, invasion, and metastasis. For instance, tran-
scription factor p53 inhibits tumor growth by promoting 
pyroptosis in non-small cell lung cancer [12]. In gastric 
cancer, a new pyroptosis-related gene signature has been 
identified to predict prognosis [13]. Nevertheless, the 
prognostic value of genes associated with pyroptosis has 
not been explored in PCa patients.

This study used bioinformatics methods to investigate 
the expression level, clinical value, and related immune 
process of pyroptosis-related genes (PRGs) in PCa 
patients to develop a good model for predicting the PCa 
patients’ prognosis and improving the treatment effect of 
disease.

Methods
Data collection and collation
The workflow of this study is depicted in Fig.  1. We 
obtained transcriptome and clinical data of 495 prostate 
cancer patients from the Cancer Genome Atlas (TCGA) 
database (https://​portal.​gdc.​cancer.​gov). Corresponding 
data from 92 patients in the Gene Expression Omnibus 
(GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
(GSE70769) were used for further model validation. In 

addition, mutation and copy number variation (CNV) 
data were also obtained from TCGA database. The batch 
effect of non-biotech deviations was removed using R 
package "SVA"[14]. We obtained 52 PRGs from previ-
ous literature as well as from the REACTOME_ PYROP-
TOSIS gene set in the Molecular Signatures Database 
(MSigDB, https://​www.​gsea-​msigdb.​org/​gsea/​index.​
jsp) [15–18] (Additional file  7: Table  S1). We explored 
the imbalance of their expression in tumor tissues using 
R-package "limma"[19] and plotted the heatmap using 
R-package "heatmap". A protein–protein interaction 
(PPI) network for the PRGs was constructed with Search 
Tool for the Retrieval of Interacting Genes (STRING, 
https://​string-​db.​org/).

Mutation analysis of PRGs
The landscape of mutations of 52 PRGs was represented 
by the waterfall diagram drawn by R-package "maltools", 
and CNV position changes of 52 PRGs on 23 chromo-
somes were drawn using R-package "RCircos".

Consensus clustering
Unsupervised clustering analysis was performed using 
R-package "Consensus Cluster Plus" and the "k-means" 
method to identify different modification patterns 
according to the expression of these PGRs and classify 
the patients for further analysis [20]. These steps were 
repeated 1000 times to ensure the classification’s stability.

Immune microenvironment analysis
The algorithms "CIBERSORT [21]" and "ESTIMATE 
[22]" were used to quantify immunocytes and evalu-
ate the purity of tumors from different clusters. Single 
sample gene set enrichment analysis (ssGSEA) [23] was 
employed to quantify immune cells, immune function, 
and pathways between different risk score subgroups.

Gene set variation analysis (GSVA)
We downloaded "c2.cp.kegg.v7.2.symbols" from MSigDB 
database and performed GSVA analysis on different 
clusters using R package "GSVA"[24], where |log2FC| 
> 0.2 and adjusted p < 0.05 were considered significantly 
enriched and presented as a heatmap.

Differentially expressed genes (DEGs)
The R-package "limma"[19] was used to obtain the dif-
ferential gene expression between different clusters, with 
the filtering criteria of |log2FC| > 1 and false discovery 
rate (FDR) < 0.05.

Univariate and multivariate Cox regression analyses
Univariate Cox regression analysis was used to screen 
for prognosis-related DEGs. In addition, univariate and 
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multivariate Cox analyses were also employed to test inde-
pendent prognostic performance of signature. P < 0.05 was 
considered significant.

Establishment of a risk signature based on PRGs cluster
Using TCGA and GSE70769 cohorts as training and testing 
sets, respectively, the most useful predictive features from 
the training set were obtained using progression-free sur-
vival (PFS) by Lasso-Cox analysis of prognostic DEGs and 
were validated in the testing set. The risk score for each 
patient is calculated as follows:

risk score =
∑n

i=1
coef (i) ∗ expr(i)

where n, coef(i), and expr(i) respectively represent the 
number, corresponding coefficient, and correspond-
ing expression of signature genes. TCGA dataset and 
GSE70769 dataset of patients were each assigned to high-
and low-score groups by median risk score of TCGA 
dataset. We evaluated the signature’s ability to differen-
tiate between subgroups of patients using Kaplan–Meier 
survival curve and determined the model’s accuracy 
using time-dependent receiver operating characteristics 
(ROC) curves.

Fig. 1  The workflow chart of this research
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Functional enrichment analysis of DEGs between low‑ 
and high‑score groups
PCa patients in TCGA cohort were divided into two sub-
groups based on median risk score. DEGs between high- 
and low-score groups were screened based on filtration 
criteria (|log2FC| ≥ 0.585 and FDR < 0.05). These DEGs 
were analyzed for Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) using R-pack-
age “clusterProfiler”.

Construction of a nomogram and performance detection
A nomogram model was constructed using R-package 
“rms” based on risk score and other independent clini-
cal factors to enhance the clinical utility of risk signature. 
Calibration charts were used to verify the nomogram’s 
accuracy.

Statistical analysis
All visualization and statistical analyses for this study 
were performed using R version 4.1.0 and the corre-
sponding feature packages. Differences between groups 
for different data sets or different classifications of data 
were determined using chi-square tests. Comparisons 
between two groups were performed using Wilcoxon 
test. In addition, Kaplan Meier (K–M) survival analysis 
was conducted using a log-rank test. The above statistical 
methods were considered statistically significant when 
p < 0.05.

Results
Defining of the expression of PRGs in PCa
The prostate cancer expression profile in the TCGA 
database included 52 normal samples and 495 tumor 
samples. First, as pyroptosis can promote tumor pro-
liferation and invasion, we used the TCGA database to 
analyze the differences of the expression levels of these 
52 PRGs in tumor tissue and normal tissue, Gleason 
Score ≤ 7 group and Gleason Score > 7 group, respec-
tively. The results indicated a difference in the expression 
levels of 35 PRGs between PCa and precancerous tis-
sues and difference in the expression levels of 22 PRGs 
between Gleason score ≤ 7 group and Gleason score > 7 
group (Fig.  2A; Additional file  8: Table  S2, Wilcoxon 
test, *P < 0.05; **P < 0.01; ***P < 0.001). The expression 

levels of IL1A, TP63, ELANE, IL6, CASP1, GSDME, 
NLRP1, IL18, NOD2, PYCARD, IL1B, NLRP7, CHMP3, 
IRF2, PRKACA, TNF, CHMP7, CASP5, CHMP2B, 
PJVK, NOD1, HMGB1, and GSDMD were down-regu-
lated in tumor tissues, whereas those of BAK1, CASP6, 
CYCS, PLCG1, TP53, CHMP2A, CASP8, GPX4, BAX, 
CHMP4C, GSDMB, and GSDMA were down-regulated 
in normal tissues. PPI network was constructed by string 
(Additional file 1: Figure S1A), and hub genes in it were 
identified using "MCODE" plugin of cytoscape software, 
which were CASP5, GSDMD, IL18, CASP1, TNF, IL1A, 
IL6, IL1B, NLRP1, and PYCARD (Additional file 1: Figure 
S1B). The correlation network consisting of 35 PRGs is 
depicted in Fig. 2B (correlation coefficient > 0.4, positive 
correlation is shown with red line, negative correlation is 
shown with blue line.

Landscape of genetic variation of PRGs in PCa
We analyzed the incidence of somatic and copy number 
mutations in 52 PRGs from PCa. As illustrated in Fig. 2C, 
83 of 495 (16.77%) PCa samples had genetic mutations. 
23 of 52 PRGs were mutated, with TP53 showing the 
highest mutation frequency. Among these types of gene 
mutations, missense mutations are the most frequent. 
We also found that at the CNVs level, most of the focus 
was on missing copies (Fig. 2E). Additionally, we identi-
fied changes in regulatory factors with CNV features on 
chromosomes (Fig. 2D).

Identification of 52 PRGs‑mediated PCa classification 
patterns
Based on the expression levels of 52 PRGs, two differ-
ent regulatory patterns, cluster 1 (n = 271) and cluster 
2 (n = 224) were identified using unsupervised cluster-
ing (Fig. 3A; Additional file 9: Table S3). Following that, 
the principal component analysis (PCA) confirmed that 
cluster 1 and cluster 2 could be distinguished using 52 
PRGs (Fig.  3C). We found that the expression levels of 
these PRGs were significantly different between the two 
clusters (Fig. 3D). Simultaneously, cluster 2 had a signifi-
cantly higher PFS rate than cluster 1 (Fig. 3B) (log-rank 
test, p = 0.005). To explore the differences in the immune 
microenvironment between these two patterns, we per-
formed immunocyte infiltration analysis and tumor 

(See figure on next page.)
Fig. 2  Characterization of pyroptosis-related genes at the biological level in tumor. A The heatmap revealed that expression levels of 35 of 52 
PRGs in tumor and normal tissues were imbalanced, with red representing high expression and blue representing low expression (Wilcoxon 
test, *P < 0.05; **P < 0.01; ***P < 0.001). B Correlation network of 35 PRGs differentially expressed between cancer and normal tissues (correlation 
coefficient > 0.4, with red line representing positive correlation and blue line representing negative correlation). C Genomic changes from 495 PCa 
samples from TCGA with waterfalls representing information on different PRGs mutations. A note at the bottom of corresponding color indicates 
different mutation types. The histogram above represents the tumor mutation burden for each sample. The number on the right indicates the 
mutation frequency. D The location of PRGs at which CNV occurs on chromosome. E The frequency of copy number variation (CNV) for different 
PRGs indicated that deletion with copy number existed in most PRGs
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Fig. 2  (See legend on previous page.)
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purity evaluation using “CIBERSORT” and “ESTIMATE” 
algorithms (Fig.  3E; Additional file  2: Figure S2A–D). 
The results indicated that the contents of Tregs and 
CD4+ activated memory T cells in cluster 1 were signifi-
cantly increased, whereas the content of resting memory 

CD4 T cells was significantly decreased. Meanwhile, 
the tumor purity of cluster 1 was higher. PD-1, PD-L1, 
PD-L2, and CTLA4 are common immune checkpoints. 
We quantified immune checkpoints of different clus-
ters, and the results indicated that the content of these 
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Fig. 3  Subunit types based on PRGs in PCa and their immune microenvironment. A Consensus clustering matrix for k = 2. B The results of K-M 
analysis indicated that cluster 1 had a significantly lower tumor progression-free survival than cluster 2 (log-rank test, p = 0.005). C Principal 
component analysis (PCA) showed that these PRGs could well divide TCGA cohort into two distinct clusters. D Heatmap with different clinical 
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algorithm (Wilcoxon test, *P < 0.05; **P < 0.01; ***P < 0.001). F The heatmap shows the biological pathway to pyroptosis-related clusters by gene set 
variation analysis (GSVA) (|log2FC|> 0.2 and adjusted p < 0.05)
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immune checkpoints was higher in cluster 2 (Additional 
file  3: Figure S3). To explore the difference in biologi-
cal behavior between these two clusters, we performed 
a GSVA enrichment analysis (Fig. 3F; Additional file 10: 
Table S4). The results showed that cluster 2 was mainly 
enriched in carcinogen pathways, such as focal adhesion, 
EMC receptor interaction, etc.

Construction and verification of risk signature based 
on PRG clusters
To better apply these subtypes to the clinical treat-
ment of PCa and determine the specific score for each 
patient, we next explored the differences between the 
two patterns and identified specific gene signatures. 
Additionally, we quantified gene signatures for use in 
predicting prognosis of individual patients. First, using 
|log2FC|> 1 and FDR < 0.05 as the filtering criteria, we 
identified 516 DEGs according to the above two patterns 
(Additional file  11: Table  S5). Following that, accord-
ing to univariate Cox regression analysis results, the 
obtained 110 prognosis-related genes were used as can-
didate molecules for constructing a prognosis signature 
(p < 0.05) (Additional file 4: Figure S4; Additional file 12: 
Table  S6). Through Lasso-Cox analysis, a signature 
consisting of eight genes was finally obtained (Fig.  4A; 
Table  1). By the product of the expression level of each 
gene and its coefficient, the risk score of each sample 
can be obtained, and risk score = (0.741 * expression 
CENPA) + (− 0.134 * expression LCN2) + (0.802 * expres-
sion COL7A1) + (0.222 * expression 
ALB) + (− 0.610 * expression UBXN10) + (0.302 * expres-
sion SPZ1) + (− 0.227 * expression 
SCNN1A) + (− 0.111 + expression TFF3). Based on the 
median risk score (0.873), all patients were assigned to 
high- and low-score groups (Additional file 13: Table S7). 
We can find that BCR patients gradually increased as 
the score increases (Fig. 4B). PFS rates were significantly 

lower in the high-score group than in the low-score 
group, as determined by K–M survival analysis (log-rank 
test, p < 0.001) (Fig. 4C). ROC analysis revealed AUC val-
ues of 0.769, 0.804, and 0.772 for 1, 3, and 5 years, respec-
tively, indicating high signature accuracy (Fig.  5A). To 
further verify the accuracy of signature, validation was 
performed using GSE70769 cohort from GEO database 
(GSE70769 cohort was divided into high and low scor-
ing groups using the median of TCGA cohort) as shown 
in Fig.  4D, E and Additional file  14: Table  S8. The two 
groups had significantly different prognoses (log-rank 
test, p < 0.001) and AUC values of 0.731, 0.753, and 0.763 
at 1, 3, and 5 years respectively (Fig. 5B), further demon-
strating signature accuracy. Furthermore, we were sur-
prised to identify that this signature reflected the overall 
survival (OS) rate of PCa patients (log-rank test, p = 0.02) 
(Fig. 4F, G), and AUC values of 1, 0.724, and 0.711 at 1, 
3, and 5  years respectively (Fig.  5C). Researchers have 
studied prognosis models of PCa with modification con-
ditions such as ferroptosis, m6A, and immune score, 
such as seven-gene signature discovered by Liu et al. [25], 
eleven-gene signature discovered by Zhang et  al. [26], 
and seven-gene signature discovered by Lv et  al. [27]. 
Through comparison, we found that the accuracy of our 
risk signature was superior to other prognostic models 
according to AUC values of the ROC curve (Fig.  5D). 
Subsequently, we confirmed by PCA that risk score could 
be used as an independent indicator to distinguish PCa 
patients (Fig. 5E, F).

Risk signature has excellent independent prognostic value
To determine whether signature could represent its prog-
nostic value independently of other clinical factors such 
as T-stage, we performed univariate and multivariate Cox 
analyses based on TCGA and GEO cohorts, respectively 
(Fig.  6A–D). The results revealed that risk score and 
T-stage were independent factors affecting PCa patients’ 
prognosis, and the hazard ratio (HR) of risk score in 
TCGA and GEO cohorts was 2.598 and 1.943, respec-
tively. The heatmap containing clinical features demon-
strates that signature can significantly distinguish the 
patient’s clinical features (Additional file 5: Figure S5). To 
further validate the clinical independence of risk score, 
we performed clinical stratification. Patients in TCGA 
cohort were divided into different subgroups based on 
their clinical characteristics (including T stage (T2 and 
T3–4), N stage (N0 and N1) and Gleason score (Gleason 
score ≤ 7 and Gleason score > 7), and K-M survival analy-
sis was performed on each subgroup according to the 
grouping of high and low scores. The results indicated 
that PFS rates of patients in the high-score group were 
significantly lower than those in the low-score group in 
all subgroups (Fig.  7A–F). Patients in GSE70769 cohort 

Table 1  Results of multivariate Cox proportional hazard 
regression analysis of candidate genes in progression-free 
survival rate

Coefficient: Weights for each gene obtained by multivariate Cox analysis.

Gene Coefficient

CENPA 0.741

LCN2 − 0.134

COL7A1 0.802

ALB 0.222

UBXN10 − 0.610

SPZ1 0.302

SCNN1A − 0.227

TFF3 − 0.111
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Fig. 4  Eight genes-based prognostic signature was constructed using Lasso-Cox regression analysis, and its efficacy was tested. A The 
distribution of partial likelihood deviation of Lasso coefficient preserves 15 variables when partial likelihood deviation reaches the minimum (Log 
Lambda = − 3.45). PFS risk profile for risk score-based patients in TCGA cohort (increased number of patients with biochemical relapse (BCR) as 
scores increased) (B), K–M surviving curve (log-rank test, p < 0.001) (C). PFS risk profile for risk score-based patients in GSE70769 cohort (same as 
TCGA cohort, with increased incidence of BCR as scores increased) (D), K–M survival curve (log-rank test, p < 0.001) (E). Overall survival risk profile for 
risk score-based patients in TCGA cohort (increased number of patients die as the score increases) (F), K–M survivable curve (log-rank test, p = 0.02) 
(G)
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were divided into different subgroups based on their 
clinical characteristics (including T stage (T1 and T2–3), 
PSA value (PSA ≤ 10 and PSA > 10) and Gleason score 
(≤ 7 and > 7). The results of K-M survival analysis showed 
that signature could be successfully applied to patients 
with T1 and T2–3, PSA ≤ 10, Gleason score ≤ 7, and 
Gleason score > 7 (Fig. 7G–L). In addition, we compared 
the risk score differences among the different T, N, and 
Gleason score subgroups in the TCGA cohort, and the 
results showed that the risk score in the T3–4, N1, Glea-
son score > 7 subgroups was significantly higher than that 
in the T2, N0, and Gleason score ≤ 7 subgroups, These 
results indicated that risk score can significantly affect 
the invasion of prostate cancer cells, lymph node metas-
tasis and pathological grade (Additional file  6: Figure S6).

Functional analyses based on risk signature
To further explore differences in gene function and path-
way between subgroups by risk score, we used R-pack-
age "limma" to obtain DEGs based on a filter criterion 
of FDR < 0.05 and |log2FC|≥ 0.585. A total of 134 DEGs 
were identified between high- and low-score groups in 
TCGA cohort (Additional file 15: Table S9). GO enrich-
ment analysis and KEGG pathway analysis were then 
performed based on these DEGs. The results revealed 

that these DEGs were mainly enriched in the muscle sys-
tem process, contractile fiber, actin binding, and PPAR 
signaling pathway (Fig. 8A, B).

High risk score indicates suppressed immune activity
Based on functional analysis, we further compared the 
enrichment scores of 16 immune cells and the activities 
of 13 immune-related pathways between low- and high-
score groups in TCGA and GEO cohorts using ssGSEA 
(Wilcoxon test, *P < 0.05; **P < 0.01; ***P < 0.001). In 
TCGA cohort, most immunocytes were higher in low-
score group, notably mast cells, neutrophils, th1 cells, 
and Treg (Fig.  9A). Moreover, the activities of most 
immune pathways in the low-score group were higher 
than those in the high-score group, such as APC co-stim-
ulation, Type II IFN response, and MHC class I (Fig. 9C). 
Similar findings were observed in GEO cohort, where 
most immunocytes and immune pathways were higher in 
the low-score group (Fig. 9B, D). The above results indi-
cated that increasing the risk score of tumor cells may 
inhibit their immunologic activity. The results of com-
parative analysis of immune checkpoints of different risk 
score are depicted in Fig. 9E, F. It could be seen that the 
expression levels of many immune checkpoints, such as 
CTLA4 and PDCD1LG2 (PD-L2), differed between high 

Fig. 5  The signature has high accuracy and applicability. 1, 3, 5-year ROC curve for risk score-based patients in TCGA cohort (A) and GSE70769 
cohort (B). C 1, 3, 5-year ROC curve of overall survival risk for risk score-based patients in TCGA cohort. D The ROC curve for the 3-year 
progression-free survival prediction of risk signature and the other four prognostic signatures. Results from PCA in TCGA cohort (E) and GSE70769 
cohort (F) showed that risk score well divided the samples into two subgroups
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and low score groups (Wilcoxon test, *P < 0.05; **P < 0.01; 
***P < 0.001).

Establishment and validation of a nomogram model
To improve the clinical power of risk signature, we estab-
lished a nomogram model comprising T stage, and risk 
score using TCGA set, and then generated calibration 
charts for 1-, 3- and 5-year periods to demonstrate its 
accuracy (Fig.  10A–D). Calibration charts revealed that 
nomogram model was highly accurate, affirming its prac-
ticability in predicting prognosis of patients.

Discussion
Pyroptosis is an inflammation-mediated, programmed 
cell death [28]. It can not only inhibit the occurrence and 
development of tumors but also develop a microenviron-
ment that provides nutrition for cancer and accelerates 
its growth [11]. However, the role of PRGs in prostate 
cancer (PCa) remains unknown, and we sought to eluci-
date this role.

PCa is a common malignant tumor found in elderly 
men worldwide [1]. Biochemical recurrence (BCR) was 
defined as the second elevation of PSA concentration 
above 0.2 μg/L, confirmed by two consecutive elevations. 
It is a determining risk factor for distant metastasis, pros-
tate cancer specificity, and overall mortality [2]. There is 
evidence that approximately 30% of patients with BCR 
develop distant metastases with clinical presentation, and 
19–27% of patients may die of prostate cancer within ten 
years without receiving second treatment [29, 30]. There-
fore, stratifying patients with post-RP localized PCa into 
high-risk BCR patients is highly desirable, which may 
provide more frequent monitoring, early intervention, 
and even decision-making regarding adjuvant therapy.

It is an effective method to classify samples based on 
a predetermined gene expression signature [31]. Our 
classification strategy is based on this approach and clas-
sifies PCa based on 52 PRGs expression patterns. We 
found that the expression of these PRGs was completely 
different between the two clusters due to heterogene-
ity. Besides, the prognosis of different clusters varies 
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significantly. Several agreements emerged from our anal-
ysis: (1) The expression level of most PRGs was higher in 
cluster 2; (2) Most DEG expression levels among differ-
ent clusters were higher in cluster 2; (3) Cluster 1, as a 

separate subtype, has a worse prognosis; (4) A combina-
tion of clinical information and RNA transcriptome data 
is more likely to reflect cell phenotype. After quantifying 
immune cells of different clusters, we discovered that 
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Fig. 7  Risk score based clinical stratification in TCGA and GSE70769 sets. Kaplan–Meier survival curves for patients with T2 (A), T3–4 (B), N0 (C), N1 
(D), Gleason score ≤ 7 (E), Gleason score > 7 (F) in TCGA set, and T1 (G), T2–3 (H), PSA ≤ 10 (I), PSA > 10 (J), Gleason score ≤ 7 (K), Gleason score > 7 (L) 
in GSE70769 set (log-rank test)
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many of them had a higher content of cluster 1, particu-
larly T regulatory cells (Tregs). Tregs are the key bar-
rier for tumor immunotherapy, as they actively mediate 
autoimmune tolerance [32, 33]. In recent years, as medi-
cine has advanced, immune checkpoint inhibitors have 
become the key treatment measures for many malignant 
tumors [34]. PD-1, PD-L1, PD-L2, and CTLA4 are com-
mon immune checkpoints, where PD-L1 and PD-L2 are 
the two ligands of PD-1 and belong to B7 family [35, 36]. 
PD-L1 is widely expressed throughout the body, par-
ticularly in immune and cancer cells, whereas PD-L2 
expression is relatively limited to professional antigen-
presenting cells and increases in response to congeni-
tal receptor signals [37]. In addition, CTLA4 antibodies 
have been demonstrated to reverse T-cell allergy, leading 
to an antitumor response [38]. We quantified immune 
checkpoints for different clusters and found cluster 2 
had higher levels of these immune checkpoints, indicat-
ing that patients with cluster 2 were more likely to benefit 
from immunotherapy.

Clinical trials have tested anti-tumor molecular target-
ing drugs in all PCa subtypes, regardless of the underly-
ing molecular subtypes. For instance, immune checkpoint 
molecules are expressed differently in different subtypes, 
and immunotherapy should be distinguished accordingly. 
To enhance clinical utility, we developed a scoring model 
(risk signature) to quantify prognostic risk based on two 

clusters. This study provided strong evidence for clinical 
management of PCa. First, risk score considers the het-
erogeneity of patients, and PCA results indicate that scor-
ing models can significantly distinguish patients from 
different risk subgroups. Second, the score can be associ-
ated with prognosis. Specifically, risk score characterizes 
and assigns different weights to both tumor suppres-
sor and tumor promoter genes. The signature included 
eight genes: CENPA, LCN2, COL7A1, ALB, UBXN10, 
SPZ1, SCNN1A, and TFF3. The coefficients of UBXN10, 
SCNN1A, LCN2, and TFF3 are negative, indicating 
that they can be used as protective factors for patients. 
Increased expression of these genes improves the progno-
sis of patients. The coefficients of ALB, SPZ1, CENPA, and 
COL7A1 are positive, indicating that increased expression 
increases the risk of poor prognosis in patients. After a 
careful review of relevant literature, we found that these 
genes were strongly associated with the occurrence and 
development of inflammation or malignant tumor. For 
instance, Masayuki Watanabe stated that Transcription 
factor SPZ1 might promote TWIST-mediated epithelial-
mesenchymal transition in thoracic malignancies [39]. 
By targeting SLPI, Xu et  al. found that LCN2 mediated 
by IL-17 affects proliferation, migration, invasion, and 
cell cycle of gastric cancer cells [40]. Sebastiano et  al. 
found that Human COL7A1-corrected induced pluripo-
tent stem cells can be used to treat recessive dystrophic 
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epidermolysis bullosa [41]. Lin et  al. found that TFF3 
contributes to epithelial-mesenchymal transition in pap-
illary thyroid carcinoma cells via MAPK/ERK signaling 
pathway [42]. Maibritt et al. found that highly significant 
and frequent hypomethylation of cancer-specific pro-
moter of TFF3 in malignant prostate cancer [43]. Anjan 
et  al. found that found that overexpression of CENPA 
was crucial for the growth of prostate cancer [44]. How-
ever, we have not found any reports regarding the role 
of these genes in mediating tumor cell pyroptosis. Third, 
risk score can significantly distinguish the clinical charac-
teristics of different patients, indicating that as the score 
increases, the proportion of PCa patients with T3, T4, and 
N1 increases significantly. Risk score predicts PFS and, to 
a certain extent, the OS rate. Fourth, data on immune cell 

infiltration indicate that risk score has significant immu-
notherapeutic value. The results of ssGSEA reveal that 
the content of most immune cells in the low score group 
is higher than that in the high score group, which results 
in an overactive immune system that may responds bet-
ter to immunotherapy. There are significant differences 
in the content of immune checkpoints among different 
subgroups, which can provide important information for 
future research on immune checkpoints associated with 
PCa, particularly PD-L2 and CTLA4. Finally, Risk score 
focuses directly on PCa cell death patterns compared to 
other models. Researchers have studied prognosis models 
of PCa with modification conditions such as ferroptosis 
[25], m6A [26], and immune score [27]. The higher AUC 
values in our model can be found by plotting the ROC 

Fig. 10  Establishment of nomogram and its performance verification. Nomogram (A) combined with age, T stage, and risk score and its calibration 
diagrams of 1-year (B), 3-year (C), and 5-year (D)
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curve, which means that the accuracy of our risk signa-
ture is better than other prognostic models. In addition, 
to improve the clinical value of risk signature, we estab-
lished a nomogram model, a score was matched for each 
variable in the nomogram scoring system. The total score 
was obtained by summing the scores of all variables of 
each sample [45]. With the nomogram scoring system, 
we can predict the PFS possibilities for the corresponding 
patient in 1, 3, and 5 years, so that risk signature can be 
more closely combined with clinical applications.

In our study, pyroptosis-related genes are used as the 
starting point, PCa patients are divided into different 
subtypes, DEGs are identified, and a prognosis model is 
constructed that can accurately predict tumor PFS rate 
of patients. At present, research progress on pyroptosis is 
limited, and the relationship between prostate cancer and 
pyroptosis has not been studied. Although we explored 
the relationship between pyroptosis and prostate can-
cer to some extent, built and verified a prognosis model 
from multiple perspectives and different databases, this 
research still has certain limitations. First, although we 
have established a risk signature based on PRG clusters, 
the relationship between its members and pyropto-
sis has not been reported before, so further in vitro and 
in  vivo experiments are needed to verify the regulatory 
relationship of these genes on pyroptosis. Second, the 
bulk expression data we used were enough DNA from a 
large number of cells to be sequenced, so the sequenc-
ing results are a global characterization of these cells. 
However, due to cellular heterogeneity, the genetic infor-
mation of cells with the same phenotype can vary sig-
nificantly, and much of the low abundance information 
is lost in the overall characterization. To compensate for 
the limitations of traditional high-throughput sequenc-
ing, single-cell sequencing technology comes of age and 
will play an important role in future studies.

Conclusion
In summary, the results of this study indicated that 
pyroptosis was strongly associated with PCa. This study 
provided a new genetic marker for predicting the prog-
nosis of PCa patients and laid the groundwork for future 
research on the relationship between pyroptosis-related 
genes and PCa immunity.
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